Computación cuántica para torpes: introducción para programadores

Hace ya bastante tiempo quese viene hablando de ordenadores cuánticos. ¿Qué son? ¿En qué se diferencian de los ordenadores clásicos? ¿Son de verdad tan potente como dicen?

En este largo artículo, ideal para el verano, vamos a ver los principios fundamentales de los ordenadores cuánticos más allá de lo que la típica revista o web te podría contar. Veremos qué es un qubit y algunas puertas lógicas interesantes, así como su aplicación.

Los ordenadores cuánticos actuales requieren temperaturas de funcionamiento cercanas al cero absoluto

Notación de Dirac

Lo primero antes de entrar en materia cuántica, será adaptar nuestra notación clásica, a otra más potente. Esta notación que vamos a ver, llamada notación de Dirac o Bra-ket, nos será muy útil ya que los bits clásicos no son más que un caso concreto de qubit en esta notación.

En esta notación tenemos que representar los bits como matrices. Un conjunto de N bits se representa con una matriz de 1 columna y \(2^N\) filas. En todas las posiciones existen ceros salvo para la posición que representa la combinación que representa. Veamos algunos ejemplos sencillos:

Un bit con valor 0 se representa así

\(
| 0 \rangle = \begin{pmatrix}
1\\
0
\end{pmatrix}\)

Un bit con valor 1 se representa así:

\(
| 1 \rangle = \begin{pmatrix}
0\\
1
\end{pmatrix}\)

Aquí contamos como en informática, empezando desde cero. Como ves la posición 0 del vector solo es 1 cuando representa el bit 0. Si la posición que tiene el 1 es la segunda, representa el bit 1.

La parte que va a la izquierda del igual se llama ket. En este caso hemos representado ket 0 y ket 1.

Si tenemos más bits se puede hacer de la misma forma. Vamos a representtar ket 10. 10 en binario es 2, así que estará en la posición tercera.

\(
| 10 \rangle = \begin{pmatrix}
0\\
0\\
1\\
0
\end{pmatrix}\)

Puertas lógicas como producto de matrices

¿Recuerdas el producto de matrices de tus clases de álgebra? Resulta que todas las puertas lógicas clásicas pueden representarse como producto de matrices. Por ejemplo, la puerta lógica NOT se puede implementar con esta matriz:

\(
\begin{pmatrix}
0 & 1 \\
1 & 0 \\
\end{pmatrix}
\)

Y aquí la vemos en acción

\(
\begin{pmatrix}
0 & 1 \\
1 & 0 \\
\end{pmatrix}\begin{pmatrix}
1 \\
0
\end{pmatrix}
=
\begin{pmatrix}
0 \\
1
\end{pmatrix}
\)

También podría hacerse con la puerta AND que toma como entrada dos bits.

\(
\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 \\
0 \\
0 \\
1
\end{pmatrix}
=
\begin{pmatrix}
0 \\
1
\end{pmatrix}
\)

Un teclado con puertas cuánticas

Juntando bits

Para formar bits más grandes ya sabemos que tenemos que tener una matriz tan grande como combinaciones haya (\(2^N\) posiciones, N bits). Existe una forma de calcular automáticamente la posición que hay que marcar y es hacer el producto tensorial. Si no sabes calcularlo no importa mucho, porque apenas lo vamos a usar, pero puedes ver un ejemplo de como funciona. En este ejemplo, queremos juntar los bits 1 y 1 (3 en decimal).

\(
\begin{pmatrix}
0 \\
1
\end{pmatrix}
\otimes
\begin{pmatrix}
0 \\
1
\end{pmatrix}
=
\begin{pmatrix}
0 \\
0 \\
0 \\
1
\end{pmatrix}
\)

Qubits

Hasta ahora no hemos visto nada realmente nuevo, solo hemos preparado el terreno para dejar paso a los qubits. Personalmente desconocía que podían usarse matrices para operar con bits y aunque no es tan práctico como otros sistemas, lo cierto es que es muy explícito y elegante.

Los qubits son bits como los que hemos visto antes pero tienen un estado indeterminado. No es que tengan un valor de forma secreta y no sepamos cuál es. Podríamos decir que son los dos valores clásicos a la vez, como el gato de Schrodinger. Cuando realizamos una observación sobre el qubit, este colapsa y podemos ver uno de los dos estados. ¿Cuál vemos? No podemos saberlo a priori, pero hay probabilidades. Los bits clásicos no son más que qubits cuyas probabilidades de colapsar a 0 o 1 es del 100%, por tanto no hay duda y su valor sí que está determinado.

¿Cómo representamos los qubits y sus estados cuánticos? Con números complejos. Si recuerdas, estos eran los que tenían una parte real y una imaginaria. No obstante, voy a tomar solo los números reales para simplificar. Los números reales son números complejos válidos, pero los complejos son mucho más extensos.

La esfera de Bloch permite representar todos los estados cuánticos (números complejos)

Para calcular la probabilidad que tiene un estado cuántico de colapsar a un valor, hacemos el módulo y elevamos al cuadrado: \(|a|^2\).

Todo qubit además debe cumplir una propiedad fundamental:

\(
\begin{pmatrix}
a \\
b
\end{pmatrix}
\text{ es un qubit}
\Leftrightarrow
|a|^2 + |b|^2 = 1
\)

Y es que la probabilidad de ser 0 y de ser 1 sumadas deben equivaler al suceso seguro, es decir, 1. 100% de probabilidades de que de 0 o 1.

Con esto ya podemos definir algunos qubits.

\(
\begin{pmatrix}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{pmatrix}
\)

Este es mi qubit preferido. Representa el estado de superposición cuántica. Cada valor tiene el 50% de probabilidades de salir. \(|\frac{1}{\sqrt{2}}|^2 = \frac{1}{2}\). Cuando colapsemos el qubit al observarlo será como lanzar una moneda al aire.

Otro detalle que a veces se nos pasa por alto es que los qubits pueden contener valores negativos. Estos qubits son físicamente diferentes a los positivos, pero tienen las mismas probabilidades de colapsar en los mismos valores que los positivos.

\(
\begin{pmatrix}
-1 \\
0
\end{pmatrix}
\)

Es un qubit válido, que colapsa con 100% de probilidad a 0.

¿Cómo se representan los qubits en notación de Dirac? Representando la probabilidad que tiene cada combinación de bits de aparecer. Para un qubit sería algo así:

\(
\alpha | 0 \rangle + \beta | 1 \rangle
\)

Siendo \(\alpha\) y \(\beta\) las probabilidades de colapsar a cada estado.

Puertas cuánticas

Ahora vamos a ver cuáles son las puertas lógicas más importantes del mundo cuántico.

Negación (Pauli X)

Esta es exactamente igual que en el mundo clásico, con la misma matriz que hemos visto antes. Su símbolo es el cuadrado con una X.

Aquí vemos una imagen del simulador IBM Q usando la puerta X cuántica. IBM nos deja ejecutarlo en ordenadores cuánticos reales. Veamos los resultados.

¡Terrible! La mayoría de casos, el ordenador cuántico responde 1, el valor correcto, pero un 13% de los casos no. Teóricamente había una probabilidad del 100% y en la práctica solo es del 86.3%. ¡Y solo es una puerta X! Es por ello que los procesadores cuánticos todavía necesitan mejorar mucho. Google, Microsoft e IBM están investigando de forma independiente en ordenadores cuánticos. Veremos quién consigue tener antes ordenadores cuánticos precisos (aunque hay expertos que piensan que nunca se podrá lograr).

CNOT

Esta puerta es muy interesante. Toma dos qubits, uno de control, que permanece invariable al traspasar la puerta y otro de datos. Al qubit de datos se le aplica la puerta X si el qubit de control está activo. Su matriz es la siguiente:

\(
CNOT = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}
\)

Se reprensenta de esta forma:

O similar, porque los símbolos de computación cuántica no están todavía muy estandarizados. El punto grande es el qubit de control y el punto pequeño está sobre el qubit de datos.

HADAMARD

Esta puerta es quizá la más famosa del mundo cuántico. Veamos su matriz:

\(
\begin{pmatrix}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{pmatrix}
\)

Esta puerta permite poner un qubit clásico en estado de superposición cuántica. Y también deshacerlo. Es muy usada en algoritmos cuánticos. Se representa con un cuadrado y una H.

Los resultados en el ordenador cuántico real de IBM Q son:

Cuando debería de ser bastante más cercano a 50% en los dos valores.

Con esto ya tenemos las puertas más usadas. Básicamente con Hadamard, X y CNOT se pueden implementar casi todos los circuitos cuánticos. Solo nos faltarían las puertas que operan entran en números complejos para poder implementar todos los circuitos.

Algoritmo de Deutsch-Jozsa

El algoritmo de Deutsch-Jozsa es uno de los algoritmos cuánticos más sencillos de entender y que mejoran drásticamente el rendimiento respecto a un algoritmo clásico.

El planteamiento básico es que tenemos una caja negra que aplica una función sobre un bit. Estas funciones pueden ser: set-to-0, set-to-1 (ambas constantes), identidad (no cambiar nada) y X (ambas dinámicas) . Si queremos saber que función contiene la caja negra, ¿Cuántas veces tenemos que pasar valores? En una CPU clásica tendríamos que hacerlo dos veces para poder determinar que función contiene la caja negra. En una CPU cuántica… también. No hay diferencia. Pero, si cambiamos la pregunta a ¿de qué categoría es la función de la caja negra?, la cosa cambia. En una CPU clásica seguiríamos necesitando 2 pruebas, pero en una CPU cuántica y con un circuito por el exterior, podemos aprovechar la superposición cuántica para realizar una sola prueba y determinar si en el interior hay una función constante o dinámica.

Vamos a ver estas 4 funciones de la caja negra como son:

¿Se te ocurre como puedes crear un circuito fuera de la caja negra que con una sola prueba, ya sepa si estamos ante las funciones Set-0, Set-1 o Identidad, Negación?

El circuito es el siguiente:

Tal y como está diseñado si en q[1] medimos 0, la función es de tipo constante y si medimos 1, es de tipo dinámica. Un desarrollo matemático de los productos de matrices, como el que hay en Wikipedia, te mostrará como siempre es cierto. Este también es un ejemplo de como los ordenadores cuánticos pueden dar resultados totalmente deterministas.

Esta idea, se puede generalizar y extrapolar a otros problemas, generando una colección muy interesante de algoritmos que se ejecutan en tiempo exponencialmente menor que en una CPU clásica.

Algoritmos de Shor y de Grover

Estos dos algoritmos han sido llamados los killer apps de la computación cuántica, ya que son algoritmos que mejoran sustancialmente (uno de forma exponencial, otro de forma cuadrática) los tiempos de problemas reales.

El algoritmo de Shor fue el primero en ser descubierto, en 1994 por Peter Shor. Sirve para factorizar números (es decir, sacar los números primos que multiplicados generan el número original). Lo puede hacer en \(O((\log{n})^3)\). De este modo, los algoritmos tipo RSA que se basan en la factorización de números podrían romperse en tiempo polinómico, por lo cuál RSA ya no serviría como protección. El algoritmo de Shor no da siempre los resultados correctos, pero tiene una probabilidad de éxito superior a la de fracaso, por lo que con repetir múltiples veces la ejecución podríamos estar casi seguros del resultado.

El algoritmo de Grover fue descubierto en 1996 por Lov Grover y permite buscar en una lista no ordenada de datos en \(O(\sqrt{n})\) mientras que en una computadora clásica sería \(O(n)\).

Estos dos algoritmos sin duda marcan lo que se ha llamada la supremacía cuántica y que ocurrirá cuando los ordenadores cuánticos puedan ejecutar con suficiente precisión estos algoritmos y su utilidad en el mundo real supere a la de los algoritmos clásicos.

Entrelazamiento cuántico

Ya hemos visto las bases de los circuitos cuánticos. Ahora veamos algunas consecuencias de todo lo anterior. Cosas cuánticas que parecen hasta cierto punto fuera de la lógica. ¿Qué ocurre si tenemos varios qubits en un estado como este?

\(
\begin{pmatrix}
\frac{1}{\sqrt{2}} \\
0 \\
0 \\
\frac{1}{\sqrt{2}}
\end{pmatrix}
\)

En este estado solo puede colapsar a 00 o a 11. ¿Esto qué significa? Significa que los qubits están entrelazados entre sí, uno depende de otro, si los separamos y uno colapsa a 0, el otro colapsa a 0. Si uno colapsa a 1, el otro colapsa a 1.

Es importante destacar que los qubits pueden separarse en este estados. Los qubits alejados a millones de kilómetros siguen entrelazados y el valor al que deciden colapsar se decide de forma instantánea. Esto quiere decir que se sincronizan a una velocidad superior a la de la luz. El truco es que no se transmite información, por eso el universo lo permite, pero esto permite realizar la teletransportación cuántica.

La forma de entrelazar qubits es muy sencilla, con una puerta Hadamard y una CNOT.

IBM Q todavía tiene que mejorar, pero se aprecia claramente el entrelazamiento cuántico.

Teletransportación cuántica

La teletransportación existe, al menos entre qubits. Y es instantánea (más o menos). La teletransportación cuántica la podemos provocar usando varios qubits entrelazados. Necesitamos 3 qubits. El qubit que va a ser teletransportado, un qubit del emisor y un qubit del receptor. La idea es entrelazar el emisor con el receptor (qubit de destino) y posteriormente el qubit del emisor con el qubit que va a ser transportado.

No he sido capaz de hacer que IBM Q haga una teletransportación, así que aquí viene un esquema distinto. T es el qubit a transportar, A es el emisor y B el receptor. En este ejemplo se usa la puerta Pauli Z, cuya matriz es la indicada.

El truco de la teletransportación instantánea tiene que ver con que A y B tienen que estar entrelazados, por tanto, han tenido que ser transportados a sus respectivos lugares anteriormente a velocidad inferior a la luz.

Esto teletransporta qubits pero no hace copias. Esto es debido al Teorema de No Clonación.

Lenguajes de programación

Mientras esperamos a que los ordenadores cuánticos sean lo suficientemente estables, ya existen lenguajes de programación que podemos usar en simuladores. Quizá el más conocido sea Q# de Microsoft (funciona en Linux, tranquilos), que guarda similitudes con C#. Otro bastante usado es OpenQasm de IBM, algo más parecido a ensamblador.

Este es un ejemplo de lanzar la moneda con entrelazamiento cuántico en Q#, el lenguaje cuántico de Microsoft.

Referencias

Quantum Computing for Computer Scientists
Cats, Qubits, and Teleportation: The Spooky World of Quantum Algorithms
Microsoft Quantum Development Kit: Introduction and step-by-step demo
Qubit

Estadística en Python: análisis de datos multidimensionales y regresión lineal (Parte IV)

Hasta ahora hemos tratado con una única variable por separado. Ahora vamos a ver qué podemos hacer con varias variables en la misma muestra (conjunto de datos). Nos interesará saber si están relacionadas o no (independencia o no). Si existe relación (estan correlacionadas) vamos a construir un modelo de regresión lineal.

Distribución conjunta de frecuencias

En el caso de dos variables, podemos construir una distribución conjunta de frecuencias. Se trata de una tabla de doble entrada donde cada dimensión corresponde a cada variable y el valor de las celdas representa la frecuencia del par. Para ello podemos usar crosstab también (de hecho, su uso original es este).

Ejemplo: En las votaciones a alcalde de la ciudad de Valladolid se presentaban Rafael, Silvia y Olga. Analiza los resultados e informa de quién fue el ganador de las elecciones. ¿Quién fue el candidato favorito en el barrio de La Rondilla?

Como podéis ver, un humando podría haber sacado estas conclusiones observando simplemente la tabla conjunta de frecuencias. ¿Quién tiene más votos en total? Rafael, con 6 en All (la suma de los distritos). ¿Quién ha sacado más votos en La Rondilla? Silvia, con 4 en la columna de La Rondilla. Por último, ¿votó más gente en el Centro o en La Rondilla? Votaron más en La Rondilla (8 votos), que en el Centro (7 votos).

A las frecuencias All se las llama comúnmente distribuciones marginales. Cuando discriminamos las frecuencias a un solo valor de una variable, se habla de distribuciones condicionadas, en este caso hemos usado la distribución de votos condicionada al distrito La Rondilla. Estas distribuciones son univariantes como habréis sospechado.

Gráfico XY o bivariante

Una manera muy útil de observar posibles correlaciones es con el gráfico XY, solamente disponible para distribuciones bivariantes. Cada observación se representa en el plano como un punto. En Matplotlib podemos dibujarlo con scatter.

Ejemplo: Represente el gráfico XY de las variables ingresos y gastos de las familias.

En la imagen podemos ver cada dato representado por un punto. En este ejemplo puede apreciarse como los puntos estan en torno a una línea recta invisible.

Covarianza

Para medir la relación entre dos variables podemos definir la covarianza:

\(
cov_{x,y}=\frac{\sum_{i=1}^{N}(x_{i}-\bar{x})(y_{i}-\bar{y})}{N}
\)

Pandas trae el método cov para calcular la matriz de covarianzas. De esta matriz, obtendremos el valor que nos interesa.

¿Y la covarianza qué nos dice? Por si mismo, bastante poco. Como mucho, si es positivo nos dice que se relacionarían de forma directa y si es negativa de forma inversa. Pero la covarianza está presente en muchas fórmulas.

Coeficiente de correlación lineal de Pearson

\(
r_{x,y}=\frac{cov_{x,y}}{s_{x}s_{y}}
\)

Uno de los métodos que usa la covarianza (aunque Pandas lo va a hacer solo) es el coeficiente de correlación lineal de Pearson. Cuanto más se acerque a 1 o -1 más correlacionadas están las variables. Su uso en Pandas es muy similar a la covarianza.

En este ejemplo concreto, el coeficiente de correlación de Pearson nos da 0.976175. Se trata de un valor lo suficientemente alto como para plantearnos una correlación lineal. Es decir, que pueda ser aproximado por una recta. Si este coeficiente es igual a 1 o -1, se puede decir que una variable es fruto de una transformación lineal de la otra.

Ajuste lineal

Vamos a intentar encontrar un modelo lineal que se ajuste a nuestras observaciones y nos permita hacer predicciones. Esta recta se llamará recta de regresión y se calcula de la siguiente forma:

\(
\hat{y}-\bar{y}=\frac{cov_{x,y}}{s_{x}^2}(x-\bar{x})
\)

Usando las funciones de varianza, media y covarianza Pandas no es muy complicado hacer una recta de regresión:

Que podemos probar visualmente:

Sin embargo SciPy ya nos trae un método que calcula la pendiente, la ordenada en el origen, el coeficiente de correlación lineal de Pearson y mucho más en un solo lugar. Es mucho más eficiente, se trata de linregress.

Además, para calcular los valores del gráfico, he usado vectorize de NumPy, que permite mapear los arrays nativos de NumPy. Más eficiente. Mismo resultado.

La ley de Ohm

¿Quién no ha oído hablar de la Ley de Ohm? Se trata de una ley que relaciona la diferencia de potencial con el amperaje dando lugar a la resistencia. La ley fue enunciada por George Simon Ohm, aunque no exactamente como la conocemos hoy en día. En este ejemplo vamos a deducir de cero la ley de Ohm. Este ejercicio se puede hacer en casa con datos reales si se dispone de un polímetro (dos mejor) y una fuente de alimentación con tensión regulable. Este ejercicio pueden hacerlo niños sin problema.

Olvida todo lo que sepas de la ley de Ohm

Es posible apreciar que en un circuito con una bombilla, si introducimos una pieza cerámica, la intensidad de la bombilla disminuye.

Cuando la corriente no atraviesa la resistencia
Cuando la corriente atraviesa la resistencia

¿Qué ocurre exactamente? ¿Por qué la bombilla tiene menos intensidad en el segundo caso?

Vamos a aislar la resistencia. Ponemos un voltímetro y un amperímetro y vamos cambiando la tensión de entrada. Anotamos la corriente medida en cada caso.

Podemos intentar hacer un ajuste lineal a estos datos. De modo, que una vez sepamos la intensidad, podamos predecir el voltaje.

Como Pearson nos da un número muy próximo a 1, podemos definir un modelo matemático siguiendo la regresión lineal.

Este modelo matemático se define así:

Y es lo que se conoce como la Ley de Ohm. En realidad, la ordenada en el origen tiene un valor muy cercano a cero, podemos quitarlo.

Así nos queda un modelo capaz de predecir lel voltaje en base a la intensidad y la pendiente de la recta. Ahora puedes probar cambiando la resistencia y observando que siempre ocurre lo mismo. Tenemos el voltaje por la pendiente del modelo. Este valor de la pendiente es lo que en física se llama resistencia y se mide en ohmios. Así se nos queda entonces la ley de Ohm que todos conocemos:

\(
V= IR
\)

En este caso la pendiente equivalía a 4.94 Ω, valor muy cercano a los 5 Ω que dice el fabricante.

¿Está usted de broma Sr. Feynman?

Acabo de leer un libro, un señor libro, uno de los que más me han gustado recientemente. Y ha sido un placer leerlo.

Se trata de ¿Está usted de broma Sr. Feynman? y es una especie de autobiografía de la vida del físico Richard Feynman. El libro se estructura en anécdotas que va contando que si bien suelen tener un elemento de inicio cronologicamente ordenado con el resto, cada anécdota puede estructurarse de forma diferente.

El libro es muy divertido y derrocha originalidad. Es un claro ejemplo de por qué prefiero los libros de no ficción, ya que superan a la ficción y por mucho.

La vida de Richard Feynman, uno de los grandes físicos del siglo XX, es una completa inspiración. Una invitación a ser curioso, a no tener miedo al qué dirán, a dejar de preocuparse y a disfrutar de las cosas de la vida.

Algunas anécdotas interesantes:

  • La apertura de cajas fuertes en Los Alamos
  • Cabrear a la censura de Los Alamos
  • Introducirse en el mundo de la pintura y llegar a realizar un cuadro para un burdel
  • Tocar la frigideira en una banda de Río de Janeiro
  • Recibir un premio Nobel
  • Dar un seminario de biología en Harvard (acabando justo él de terminar física)
  • Hablar en un idioma inventado en una actuación de scouts
  • Ligar en un local de carretera
  • Y muchas más

Mi más sincera recomendación. Yo ahora empiezo con la segunda parte ¿Qué te importa lo que piensen los demás?

 

El Universo Mecánico

Hoy voy a recomendaros una excelente serie documental sobre física. El Universo Mecánico.

eluniversomecanico

La serie se organiza en 52 episodios, todos ellos muy interesantes, con una misma estructura. El profesor de CalTech (doctor David L. Goodstein) desde su clase con alumnos hará una introducción al tema en cuestión. Puede que haga un experimento, cuente una historia o incluso lea un poema. Después un narrador nos explicará la teoría, apoyándose de ejemplos, ecuaciones en pantalla y gráficos 3D (revolucionarios para la época).

El Universo Mecánico no es una serie superificial, no incide mucho en las ecuaciones, pero los conceptos pueden ser algo avanzados, dependiendo del nivel que tenga el espectador. De todos modos, la serie cuenta con un par de capítulos instrumentales donde se explican los conceptos de vector, derivada e integral, que pueden servir al espectador que no domine estos conceptos matemáticos.

movingcircles

La serie no se deja prácticamente nada de la física, veremos desde partículas elementales hasta las ecuaciones de Maxwell pasando por óptica, temperatura, magnetismo, electricidad, gravitación, conservación del momento, ondas, movimiento armónico simple, …

Aprenderemos no solo fórmulas y ecuaciones con sentido (o sin él) sino que comprenderemos la genialidad intrínseca de cada teoría. Veremos que no hay verdades inamovibles, que nunca podemos olvidar la historia y que aunque al final del día esa magnífica ecuación nos sirva para mandar esa nave a la luna, lo subyacente, lo real en sí, no es eso. La realidad es la realidad y nosotros nos intentamos acercar a ella con modelos matemáticos. Y como muchas veces hemos visto que dos cosas bien distintas (aparentemente) en realidad son el mismo efecto de la realidad. ¿Qué es una fuerza? Solamente un concepto teórico, que no existe en la realidad, para explicar algo que sucede en nuestro universo.

Pero aprenderemos además que todo está relacionado con todo, el arte, la poesía, la política, la filosofía y la física no son más que divisiones, en cierto modo arbitrarias que hacemos los humanos dentro de una realidad que no tiene divisiones, que no “colecciona sellos”.

Para mí, una de las mejores series documentales de ciencia.

Sobre la Física – Parte 2 – ¿Qué es la luz?

Respuesta corta: dualidad onda-pratícula Respuesta larga: la pregunta no tiene sentido y sigue leyendo

Antes de nada, puede que en algún sitio haya cometido un error garrafal de terminología o de concepto, en ese caso indicádmelo

Contexto

La dualidad onda-partícula hace referencia a la naturaleza de la luz. ¿Qué es la luz? ¿De qué está formada? Para explicarlo, tenemos que remontarnos al siglo XVII, tiempo de Newton y Huygens.

En esta época, la física despega y cada vez se proponen nuevas leyes para explicar fenómenos observados desde la antigüedad, pero que en la cultura clásica grecorromana y posteriormente en filosofía escolástica se trataban sin referencia a las matemáticas. Este concepto actual de relacionar y aplicar las matemáticas a la naturaleza es un pensamiento que nace en el renacimiento.

Al tratar el tema de la luz se realizan experimentos con conclusiones muy dispares, lo que genera gran controversia entre los pocos científicos que había en la época. Básicamente distinguimos dos teorías, no voy a explicar sus experimentos, solo el concepto.

Por un lado, Isaac Newton, propone que la luz es una partícula (una especie de pelotita) y actúa como tal. Tiene experimentos que lo corroboran.

Por otro lado, Huygens propone que la luz es una onda y actúa como tal. Tiene experimentos que lo corroboran.

Sin embargo los modelos de partícula y onda son imcompatibles entre sí y lo que explica una teoría no puede ser explicado por la otra y viceversa. Gran problema.

Maxwell

Entonces llega Maxwell, ya en el siglo XIX y en un atisbo de genialidad, saca a relucir sus ecuaciones electromagnéticas. Estas ecuaciones son un punto de inflexión en la física, unifican mucho contenido disperso de un asunto que traía de cabeza a los físicos como era la electricidad y el magnetismo. Demuestra que estan relacionadas estas propiedades (o que realmente son lo mismo, según la interpretación) y realiza un curioso hallazgo y es que la relación entre campo eléctrico y campo magnético es… la velocidad de la luz. Esto servirá de punto de partida para que Einstein para su teoría de la relatividad, en la cual la velocidad de la luz es constante y no puede ser superada. Volvemos a Maxwell. Esa relación parece indicar que la luz es en realidad una onda electromagnética. ¿Parece que Huygens tenía razón, no?

maxwell

maxwell-god

Efecto Fotoeléctrico

Pues tampoco, porque a principios de siglo XX se observa el efecto fotoeléctrico. Este efecto no se puede explicar de ninguna manera por la teoría electromagnética y Einstein en 1905 revoluciona el campo de la concepción materia-energía con una teoría cuantificada. Volvamos atrás al concepto de cuantificado.

FotoElectrico

Max Planck propone un modelo cuántico, el primero, para tratar de explicar comportamientos relacionados con el cuerpo negro. La teoría supone un cambio drástico porque supone admitir que no existen todos los valores de una variable, sino que las magnitudes físicas van a saltos. Estos saltos son los cuantos, de ahí el nombre de la física cuántica.

Einstein toma el concepto de los cuantos y los usa para explicar la naturaleza de la luz en el efecto fotoeléctrico. Para él la luz sigue siendo una onda pero a la vez se transmite en una especie de paquetes. Esos paquetes los llama fotones. Entonces llega el Efecto Compton, que a nivel de electrones demuestra que el fotón tiene comportamiento de partícula. Pero esto ya se vuelve difícil de explicar.

Las teorías de Maxwell funcionaban muy bien y habían sido puestas en práctica con una asombrosa precisión. Ahora estos nuevos experimentos contradecían la teoría de Maxwell. Y lo peor es que aunque se ha definido un comportamiento de partícula, resulta imposible tratar de encontrar la masa de la luz. ¿Cuántos gramos tiene la luz?

Desde entonces se habla de dualidad onda-partícula, la luz es partícula y onda a la vez.

Conclusión

La conclusión a la que podemos llegar (seguro que hay más) es que la física no explica como ES la realidad, sino que planeta modelos que se ajustan a la realidad, pero el universo no es un ordenador o una calculadora. No es una gran ecuación. El universo es el universo, el universo no entiende de la razón y de lógica. Simplemente ES. Y nosotros podemos aplicar modelos, pero esos modelos no SON la realidad.

Así pues la luz es la luz y se manifiesta de formas distintas en nuestros modelos simplificados, reduccionistas. La pregunta entonces no tiene sentido. En general dudo que podamos llegar hasta el “final de la física” puesto que no tendremos nunca la certeza de que el universo se comporta de forma lógica y racional o se comporta de manera irracional, aunque tengamos modelos matemáticos que puedan predecir la realidad con una asombrosa precisión. No caigamos en el dogma del empirismo. No sobrepasemos los límites de la razón.